平面向量共线定理(平面向量共线定理公式)
平面向量共线性定理(平面向量共线性定理的公式)不是每个人都知道的。然后小丽讲平面向量的共线性定理。
1.平面向量共线性定理:共线向量是平行向量。方向相同或相反的非零向量称为平行向量,记为A∑b,任何一组平行向量都可以移到同一条直线上,所以称为共线向量。共线向量的基本定理是:如果a≠0,那么向量B与A共线的充要条件是存在唯一的实数λ,使得B = λ A。
2.如果a≠0,那么向量B与A共线的充要条件是存在唯一的实数λ,使得B = λ A。
3.证明:
充分性:对于向量a(a≠0)和B,如果存在实数λ,使得b=λa,那么从实数和向量的乘积的定义可知,向量A和B共线。
必要性:已知向量a和b共线,a≠0,向量b的长度是向量a长度的m倍,即∣b∣=m∣a∣.那么当向量A和B方向相同时设λ=m,b=λa,当向量A和B方向相反时设λ=-m,b=λa。如果b=0,那么λ=0。
唯一性:若b=λa=μa,则(λ-μ)a=0。但是因为a≠0,λ = μ。
仅此而已。希望小礼物的内容能帮助你了解更多。
- 标签: